
An SLA-Aware Network Function Selection
Algorithm for SFCs

Gaurav Garg∗, Venkatarami Reddy∗, Vanlin Sathya†, Antony Franklin A∗, Bheemarjuna Reddy Tamma∗
∗ Indian Institute of Technology, Hyderabad - INDIA, † University of Chicago - USA

Email: {cs16mtech11022, cs17resch01007, antony.franklin, tbr}@iith.ac.in, vanlin@uchicago.edu

Abstract—5G is expected to support diverse services with
different service requirements. Network Slicing (NS) is a new
paradigm which aims to assign different services to a logically
dedicated network. A network slice can host multiple services of
similar requirements. The traffic flows belonging to a service
are processed by a sequence of Virtual Network Functions
(VNFs) which form a Service Function Chain (SFC). To utilize
the resources efficiently, an operator can share the same VNF
instance for multiple SFCs. The CPU utilization of a VNF
instance can increase when new flows are accepted. This may
increase the VNF delay which can result in the violation of SLA
requirements of the existing flows. Therefore, an efficient VNF
selection to form SFCs while meeting the SLA requirements is
an important aspect that needs to be addressed. In this paper,
we address the VNF selection problem for an SFC with the goal
of supporting more number of SFCs by considering the dynamic
variation of VNF delay. We develop a heuristic algorithm namely
PENDANT which considers the effect of CPU utilization on VNF
delay and migrates flows to other VNF instances to avoid SLA
violations.

I. INTRODUCTION

Among the many visions that 5G has promised, the need
for the 5G network to support a diverse set of services is very
essential. The legacy one-size-fits-all model fails to address
this issue because these networks are not designed to dif-
ferentiate between the demands of services. Network Slicing
(NS) is a new fundamental capability of 5G infrastructure
which brings a flexible network architecture to support diverse
services and allows multiple virtual networks to be created on
the top of a common shared physical infrastructure [1]. A
NS can host one or more services of similar requirements.
Each traffic flow belonging to a service is processed by a
sequence of Virtual Network Functions (VNFs) which forms a
Service Function Chain (SFC). To meet the user demands from
different locations, an operator may choose to deploy VNF
instances of different types across multiple Network Function
Virtualization (NFV) nodes.

For any flow with SFC request, the selected VNF’s location
determines its end-to-end latency which primarily comprises
of link delay and VNF delay. VNF delay of any VNF instance
is computed as the difference between the timestamps of the
packet on the output and input interfaces. After the selection
of VNF instances, it is also important to guarantee the SLA
requirements for all the flows during their lifetimes. Network
traffic passing through a VNF instance changes dynamically
depending on the number of flows and their varying traffic
rates leading to an increase in VNF delay. This increase
in VNF delay is majorly a result of queuing delay which

varies with the utilization of physical resources and may
cause increase in the end-to-end latency of the flows. To
avoid the end-to-end delay violation, traffic flows can be
steered through alternative VNF instances to meet the SLA
requirements by a process known as flow migration. All the
existing approaches [2] [3] on VNF selection overlook the
effect of CPU utilization on VNF delay which could incur
SLA violations for the existing flows. Therefore, an efficient
selection of VNFs to form SFCs while meeting the SLA
requirements is an important aspect that still needs to be
addressed.

The main contributions of the paper are as follows:
• We show how VNF delay varies with different CPU

utilizations for different types of VNFs and formulate the
problem of VNF selection to provision SFC requests as
a Nonlinear Integer Programming (NLP) model.

• Since the problem is NP-hard [4], we propose a heuristic
algorithm, PENDANT based on dynamic programming
(DP) approach which considers the variation of VNF
delay with its CPU utilization. While choosing any NF
instance, PENDANT considers the effect of the already
running flows on the instance.

• Through extensive simulations, we show that PENDANT
outperforms the existing schemes Shortest Path Service
Scheme (SPSS) [2] and Delay-Aware VNF Selection
Algorithm for Service Function Chaining (DAVIS) [5] by
30% and 8% of average acceptance ratio, respectively.

II. RELATED WORK & MOTIVATION

A. Related Work

Recently, there have been several works which studied the
problem of NF selection in NFV-based telecom networks.
The authors of [2] formulated the problem of NF selection
and traffic steering as an ILP model and proposed a heuristic
algorithm with the objective of maximizing the throughput of
SFC requests accommodated in a network. The authors of [6]
proposed a VNF chaining and placement model that considers
both traffic engineering and network functions virtualization
infrastructure cost as the optimization goals. In our previous
work [5], we considered the relationship between CPU utiliza-
tion and VNF delay and proposed an algorithm named DAVIS
to maximize the acceptance rate. However, to accommodate a
request, DAVIS does not perform flow migrations. Chen et
al. [3] build a controller to migrate the flows in NFV/SDN-
based environments and design optimal formulation. Differing

524

from previous works, while selecting VNF instances for SFC
requests, we also consider the the variation of VNF delay with
its CPU utilization.
B. Motivation

To discuss how VNF delay plays a vital role in NF selection,
we experiment with three types of VNFs. The three VNFs
chosen for the experiment are Snort [7], Pktstat [8] and
Nginx [8]. In our experiments, we configured Snort with 30K
rules and Nginx is configured to update the port number of
packets received at port 80 to port 5001. The VNFs have
been configured on a machine with Intel Xeon E5-1650 v4
3.60 GHz CPU, equipped with 32 GB of RAM, 12 cores,
and running on Ubuntu 16.04 LTS 6. The VNFs run on
VMs, configured with one vCPU and 1 GB of RAM. The
background traffic to the VNF is generated using iPerf3 from
another machine with similar configuration. A network testing
application netperf [9] is used to compute the VNF delay on
the VNF instance.

As shown in Figure 1, we observe that the VNF delay of
each VNF increases with its CPU utilization. Moreover, the
VNF delay also depends on the type of VNF. For example,
since NAT reads as well as writes into a packet, the VNF
delay of NAT is more than VNF delay of Snort and Pktstat.
Therefore, we conclude that the VNF delay of different VNFs
vary with CPU utilization, which makes it necessary for an
operator to take this variation into account while selecting
VNF instances to provision SFC requests.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The physical 5G core network is modelled as an undirected
graph G = (V , E) where V is the set of servers (nodes) and E
is the set of edges which connect the nodes. We assume that
all the flows are with SFC requests and each SFC request r ∈
R is represented by a 6-tuple (sr, dr, latr, Fr, br, resr) where
sr and dr are the source and destination nodes, respectively.
latr is the tolerable end-to-end latency and br is the requested
bandwidth for the request r. Fr defines the service chain for
the request, consisting of L number of VNFs, represented as
Fr = {fr1, fr2,. . . , frL}, where frj ∈ F is the jth VNF
to be traversed by the request r. Multiple instances of VNF
type f ∈ Fr can be deployed on a node v ∈ V . Each request
is attributed with a vector of CPU demands that need to be
satisfied, denoted by resr.

B. Nonlinear Integer Programming Formulation

The objective of the proposed Nonlinear Integer Program-
ming (NLP) model is to maximize the total number of accepted

0 15-25 35-45 55-65 75-85 95-100
CPU Utilization (in %)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

VN
F
De

la
y
(in

 m
s)

Nginx
Pktstat
Snort

Figure 1: Effect of CPU Utilization (%) on VNF Delay (ms).

Table I: Notation used in the Optimization Model
Notation Description
G(V,E) Network Topology

R The set of SFC requests, r ∈ R
latr The end-to-end latency requirement of r
de The latency of link e
dm The VNF delay of node m
br The bandwidth of request r
resr The CPU resource requirements of request r
resm The CPU resources of node m
cape The capacity of link e
Qr 1, if request r is accepted

xmfng
r 1, if r traverses from VNF g on node n to VNF f on node m
lmne
r 1, if r traverses through link e from node m to node n
zfmr 1, if r traverses through VNF f on node m

requests, while guaranteeing QoS constraints for each traffic
request r.

Eqn. (1) shows the objective function of the optimization
model. All the notation used in optimization model is sum-
marized in Table I.

max
∑
r

Qrbr S.T Eqn.(1) to (4)

Constraints: For the VNF selection problem, we assume
that SFC request r passes through VNF f only once :∑

v∈V

z
mf
r = 1 ∀f ∈ Fr, ∀r ∈ R (1)

To guarantee the QoS constraints, we must verify the end-to-
end latency requirement :

∑
e

∑
m,n

∑
f∈Fr

∑
g∈Fr

x
mnug
r l

mne
r (dm + de) ≤ latr ∀r ∈ R (2)

The following Eqns. (3) and (4) assure that the CPU and
bandwidth constraints of nodes and physical links are satis-
fied : ∑

r∈R

z
mf
r resrQr ≤ resm ∀m ∈ V (3)

∑
r∈R

x
mfng
r z

nf
r br.Qr ≤ cape ∀e ∈ E (4)

where, Qr, xmfng
r , lmne

r , yfgr , zfmr ∈ {0, 1} are binary
decision variables. Since the VNF selection problem is NLP,
it cannot be solved in a reasonable time for large networks.
Hence, we propose a heuristic algorithm namely PENDANT
which is explained in the following section.

IV. HEURISTIC ALGORITHM SOLUTION

The abstract of PENDANT algorithm is shown in Alg. 1
which takes G(V,E) and the set of SFC requests R as inputs.

Algorithm 1 : PENDANT Algorithm
Input: G(V,E), R(r ∈ R)
Output: Path Pr for each r ∈ R and acceptance ratio ar

1: for each r ∈ R do
2: Pr ← V NFSelection(G, r)
3: if Pr 6= NULL then
4: for each link e ∈Pr and VNF node v ∈Pr do
5: Update the available resources
6: end for
7: else
8: Reject the SFC request r
9: end if

10: end for
11: return acceptance ratio;

525

A. VNFSelection function

PENDANT uses V NFSelection function to find the
path from source to destination to maximize the number of
accepted requests. To find the path between sr and dr, we build
a multi-stage graph with (L+2) stages. 0th and (L+1)th stages
are fixed as sr and dr respectively. The elements in each stage
represent the nodes which run the VNF type fL. The detailed
description of V NFSelection function is given in Alg. 2.

Algorithm 2 : VNFSelection (G, r)
1: Generate multi-stage graph with L stages and ensure that

the selected node can accommodate r without violating
the guaranteed latency of the existing flows

2: Find the path P acc. to Eqn. (1) and the corresponding
constraints to maximize the throughput of the accepted
requests with the minimum end-to-end delay

3: for each node i in path P do
4: Pr ← Delete node i from path P and select other nodes

of the same VNF type
5: var ← FlowMigration(G, r, Pr)
6: if var = true then
7: return Pr

8: end if
9: end for

We use Dijkstra′s algorithm to find the shortest path
between the nodes. A node is selected in the path if and only if
it can accommodate request r without violating the guaranteed
latency of the existing flows. The algorithm retrieves the
shortest path according to Eqn. (1) subject to constraints given
in Eqns. (2) - (5) by backtracking the optimal states. We
invoke FlowMigration function for finding the shortest path
P . FlowMigration migrates the existing flows from one
instance of the node to another instance on the same node.
It returns true if the request r can be accommodated on the
path P without violating the guaranteed latency of the existing
flows on any of the nodes traversed by P . If it returns false,
we delete each node in path Pr and select other VNF nodes of
the same VNF type, and if the latency of path Pr is less than
the requested latency, we invoke FlowMigration for each
path Pr. If FlowMigration returns true for any path Pr, the
path is returned to PENDANT .

B. FlowMigration function

When flow r is accommodated on an instance, some existing
flows can violate their SLA requirements. Such flows are
termed as unsafe flows and rest of the flows are termed as
safe flows.

For each node v on path P , the instance with the most
number of safe flows is stored in Ims, and the instance with
the most number of unsafe flows is stored in Imu (line 2 -
line 3). For each flow f provisioned on Ims and Imu, df is
the difference of current latency of the request from the SLA
latency (line 4 - line 6). We select the flows which violate
their SLAs from Ims and Imu, sort the flows according to df
and store them in unsafe. Similarly, the flows which do not
violate their SLAs are sorted according to df (in descending
order) and stored in safe. After forming sets unsafe and

safe from the flows, the algorithm migrates a flow u to
instances such that ds > du and flows s and u are provisioned
on different instances. The intuition here is to migrate the
flow which violates its SLA to an instance where no flow gets
violated. Therefore, when the new request is provisioned on
the instance, none of the existing requests violate their SLAs.
Finally, the path is returned to V NFSelection if the achieved
latency is within the SLA requirements (line 10 - line 12).

Algorithm 3 : FlowMigration (G, r, P)
1: for each node v on path P do
2: Ims = Instance with most number of safe SFC flows
3: Imu = Instance with most number of unsafe SFC flows
4: for each flow f in Ims and Imu do
5: df = latf - latcur
6: end for
7: unsafe = Sorted set (according to df) of flows from

Ims and Imu which violate their SLAs
8: safe = Sorted set (according to df , in descending

order) of flows from Ims and Imu which do not violate
their SLAs

9: Migrate u ∈ unsafe to instances and s ∈ safe
to instanceu s.t. ds > du

10: if any instance on node v does not have enough re-
sources to provision r then

11: return false
12: end if
13: end for

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PENDANT
on a widely used telecom network topology - RocketFuel with
58 nodes and 108 edges [10]. To evaluate the performance, we
have used a simulator developed in C++. Each experiment was
repeated 100 times and the obtained results are plotted with
95% confidence interval.

A. Simulation Setup

We test PENDANT on 3 types of VNFs. Each node can host
multiple instances of the same VNF type. The type of VNF
a node can host is selected randomly. The VNF delays at re-
spective CPU utilizations have been taken from Figure 1. The
available capacity at each link is set as 1500 Mbps. According
to [11], we configure the nodes and VNF instances with [50
- 200] and [10 - 20] units of CPU resources, respectively.
The length of each SFC request is fixed to 3. The end-to-end
latency for each request is assumed to be randomly distributed
in [20 - 30] ms. Each link is characterized by bandwidth which
is randomly selected from [10, 20, 30, 40, 50] Mbps. The CPU
resource required by each request is randomly distributed in [1
- 5] units. The link delays are set in the range [5 - 40] ms [10].

Performance metrics: To evaluate the proposed approach,
we consider three performance metrics. SFC Acceptance Ratio
is calculated as the ratio of accepted number of SFC requests
to the total number of SFC requests. Effective Throughput is
the sum of throughput of all the accepted requests. Number
of Accepted Requests per Instance is the ratio of total number
of successfully provisioned SFC requests to the total number
of active instances. This metric signifies the fairness ratio i.e.,

526

100 125 150 175 200
Total Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

SPSS
DAVIS
PENDANT

(a) Acceptance Ratio vs No. of SFC Requests.

100 125 150 175 200
Total Number of Requests

0

500

1000

1500

2000

2500

3000

3500

Ef
fe
ct
iv
e
Th
ro
ug
hp
ut
 (i
n
M
bp
s) SPSS

DAVIS
PENDANT

(b) Effective Throughput vs No. of SFC Requests.

100 125 150 175 200
Total Number of Requests

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m
be
r o

f A
cc
ep
te
d
Re

qu
es
ts

pe
r I
ns
ta
nc
e

SPSS
DAVIS
PENDANT

(c) No. of Accepted Requests vs SFC Requests.
Figure 2: Simulation results of RocketFuel topology.

how efficiently the algorithm provisions the requests on the
available resources.

Algorithms Compared: We compare the proposed ap-
proach PENDANT with two state-of-the-art algorithms. SPSS
prefers to select a node along the shortest path and does
not consider the relationship between CPU utilization and
VNF delay. DAVIS considers the relationship between CPU
utilization and VNF delay. To accommodate requests, the
above two algorithms do not migrate the flows from one
instance of the node to another.

To show the effectiveness of our solution, we also compare
the performance of PENDANT with the optimization model.
The optimization model has been solved using GAMS CPLEX
solver and since the model takes a long time, we show the
results on a small-scale ARPANET [12] topology with 4 nodes
and 4 edges. The total number of requests is set as 10 and the
results in Table II show that PENDANT gives close results as
compared to the optimization model.

Table II: Comparison between Optimization and PENDANT
Acceptance Ratio Effective Throughput (in Mbps)

Optimization 0.9 190

PENDANT 0.7 170

B. Simulation Results

Acceptance Ratio: Figure 2a shows the average acceptance
ratio achieved by the algorithms on RocketFuel topology. The
acceptance ratio of PENDANT is always the highest among
the three algorithms. The main reason behind it is that SPSS
algorithm provisions the SFC requests based on the available
capacities and link delays and does not check whether already
provisioned requests violate their SLAs or not. PENDANT
provisions the SFC requests considering the current utilization
and does not violate other SFCs’ SLAs. Thus, PENDANT
accepts upto 30% more requests over SPSS and 8% more
requests over DAVIS.

Effective Throughput: Figure 2b shows the effective
throughput achieved by the three algorithms. We can see that
effective throughput increases with the increase in number
of SFC requests. The effective throughput is the highest for
PENDANT and outperforms SPSS and DAVIS by upto 85%
and 11%, respectively.

Number of Accepted Requests per Instance: Figure 2c
shows the average rate of SFC requests achieved by the
algorithms. The figures show that PENDANT is the most

effective in terms of resources used. It means that PENDANT
effectively utilizes the given resources to accept more number
of requests. This is because PENDANT migrates requests to an
already running instance instead of creating a new instance.
Hence, it decreases the overall number of instances used to
provision the requests by 19% over SPSS and 7% over DAVIS.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an efficient heuristic algorithm
named PENDANT to provision the SFC requests. Given a
SFC request, PENDANT selects the nodes while considering
their current utilization and steers the traffic through them. We
also show that the number of resources used is comparatively
less than the existing methods. Extending the algorithm to the
scenario where requests can leave the network at any time and
release the resources is part of our future work.

ACKNOWLEDGEMENTS

This work is partially supported by the R&D work under-
taken in the project under the Visvesvaraya PhD Scheme of
Ministry of Electronics & Information Technology (MeitY),
Govt. of India, being implemented by Digital India Corpora-
tion and “Converged Cloud Communication Technologies” of
MeitY, Govt. of India.

REFERENCES

[1] NGMN Alliance. Ngmn 5g white paper. 2015.
[2] Shundan Jiao et al. Joint virtual network function selection and

traffic steering in telecom networks. In Proc. of IEEE Conference on
GLOBECOM, pages 1–7, 2017.

[3] C. Sun et al. Enabling nfv elasticity control with optimized flow migra-
tion. IEEE Journal on Selected Areas in Communications, 36(10):2288–
2303, Oct 2018.

[4] A. Fischer et al. Virtual network embedding: A survey. IEEE
Communications Surveys Tutorials, 15(4):1888–1906, Fourth 2013.

[5] G. Garg, V. Reddy, A. Antony Franklin, and B. R. Tamma. Davis:
A delay-aware vnf selection algorithm for service function chaining. In
Proc. of 2019 11th International Conference on Communication Systems
Networks (COMSNETS), pages 436–439, Jan 2019.

[6] B. Addis et al. Virtual network functions placement and routing
optimization. In Proc. IEEE 4th International Conference on CloudNet,
pages 171–177, Oct 2015.

[7] https://www.snort.org/.
[8] https://linux.die.net/man/1/pktstat/.
[9] https://hewlettpackard.github.io/netperf/.

[10] RocketFuel ISP Topology. https://tinyurl.com/y9f2pp8v. [Online].
[11] Qixia Zhang et al. Adaptive interference-aware vnf placement for

service-customized 5g network slices. Proc. of IEEE INFOCOM 2019
- IEEE Conference on Computer Communications, 2019.

[12] http://www.topology-zoo.org/maps/arpanet196912.jpg. [Online].

527

